Math 131B-1: Optional "Homework" 10

1. Do Apostol 12.9, 12.12, 12.14 .

2 . Let $f: \mathbb{R}^{2} \rightarrow R$ be given by

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & (x, y \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that all the directional derivatives of f exist at $(0,0)$, but f is not differentiable.
3. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has $f^{\prime}(x)=0$ for all x, then f is constant. (Hint: Two points determine a line, and you can take a directional derivative along any line away from a point.)
4. Try to find a function $f: \mathbb{R}^{2} \rightarrow R$ whose mixed partial derivatives $D_{2,1} f$ and $D_{1,2} f$ exist and are not equal. (Hint: By Clairaut's theorem, what properties can't these partial derivatives have?)

